The `Conflict-Free Open (Closed) Neighborhood coloring', abbreviated CFON (CFCN) coloring, of a graph $G$ using $r$ colors is a coloring of the vertices of $G$ such that every vertex sees some color exactly once in its open (closed) neighborhood. The minimum $r$ such that $G$ has a CFON (CFCN) coloring using $r$ colors is called the `CFON chromatic number' (`CFCN chromatic number') of $G$. This is denoted by $\chi_{CF}^{ON}(G)$ ($\chi_{CF}^{CN}(G)$). D\k ebski and Przyby\l{}o in [J. Graph Theory, 2021] showed that if $G$ is a line graph with maximum degree $\Delta$, then $\chi_{CF}^{CN}(G) = O(\ln \Delta)$. As an open question, they asked if the result could be extended to claw-free ($K_{1,3}$-free) graphs, which are a superclass of line graphs. For $k\geq 3$, we show that if $G$ is $K_{1,k}$-free, then $\chi_{CF}^{ON}(G) = O(k^2\ln \Delta)$. Since it is known that the CFCN chromatic number of a graph is at most twice its CFON chromatic number, this answers the question posed by D\k{e}bski and Przyby\l{}o.
翻译:使用 $ $ 美元 的 GG 表示 $ g$ ( G) 的 GG$ ($ $ $ $ g$ $ g$ $ g$) 的 GF 彩色, 使每个顶端都能在开放( 闭闭) 的周围看到某种颜色。 最低值是 $G$ 有 美元 彩色的 CFON (CF) 彩色 $ (CFN) (CFN) $ $ (CFN) 的 CFON 美元 (CFN) (CFN) 美元 。 这是用 $ $ $ (G$ $ $ $ $ $ $ (ch) 的表示的 美元 。 Dk ebski 和 Przyzyby the line $ ($) $( 美元) $( 美元) 美元) 如果$G$ (CFloral_ 美元), 那么, 美元 (clock to colormacol) 是 $ (美元)