In this thesis, we study multiple tasks related to document layout analysis such as the detection of text lines, the splitting into acts or the detection of the writing support. Thus, we propose two deep neural models following two different approaches. We aim at proposing a model for object detection that considers the difficulties associated with document processing, including the limited amount of training data available. In this respect, we propose a pixel-level detection model and a second object-level detection model. We first propose a detection model with few parameters, fast in prediction, and which can obtain accurate prediction masks from a reduced number of training data. We implemented a strategy of collection and uniformization of many datasets, which are used to train a single line detection model that demonstrates high generalization capabilities to out-of-sample documents. We also propose a Transformer-based detection model. The design of such a model required redefining the task of object detection in document images and to study different approaches. Following this study, we propose an object detection strategy consisting in sequentially predicting the coordinates of the objects enclosing rectangles through a pixel classification. This strategy allows obtaining a fast model with only few parameters. Finally, in an industrial setting, new non-annotated data are often available. Thus, in the case of a model adaptation to this new data, it is expected to provide the system as few new annotated samples as possible. The selection of relevant samples for manual annotation is therefore crucial to enable successful adaptation. For this purpose, we propose confidence estimators from different approaches for object detection. We show that these estimators greatly reduce the amount of annotated data while optimizing the performances.


翻译:在此论文中,我们研究与文件布局分析有关的多重任务,如探测文本线、分解成动作或探测写作支持等。因此,我们建议采用两种不同的方法,提出两个深神经模型,目的是提出一个物体探测模型,其中考虑到与文件处理有关的困难,包括现有培训数据的有限数量。在这方面,我们提议一个像素级探测模型和第二个目标级探测模型。我们首先提出一个检测模型,其中的参数不多,在预测中迅速,可以从减少的培训数据中获取准确的预测掩码。我们实施了收集和统一许多数据集的战略,用于训练一个显示高一般化能力以排除文件的单一线探测模型。我们还提出一个基于变异体的检测模型。我们提出一个目标探测战略,在顺序上预测通过比素分类对连接的物体进行精确的预测。我们提出这样的战略可以快速地获得一个指标性能模型,最后我们提出一个关键性能的模型,作为新的性能样本,我们提出一个新的性能模型,最后提供一个新的性能模型。我们提出一个新的性能模型,作为新的性能样本,作为新的性能标,最后提供一个非性能的性能的性能样本。我们提出一个非性能的性能。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2018年5月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员