Consider a set $P$ of $n$ points picked uniformly and independently from $[0,1]^d$ for a constant dimension $d$ -- such a point set is extremely well behaved in many aspects. For example, for a fixed $r \in [0,1]$, we prove a new concentration result on the number of pairs of points of $P$ at a distance at most $r$ -- we show that this number lies in an interval that contains only $O(n \log n)$ numbers. We also present simple linear time algorithms to construct the Delaunay triangulation, Euclidean MST, and the convex hull of the points of $P$. The MST algorithm is an interesting divide-and-conquer algorithm which might be of independent interest. We also provide a new proof that the expected complexity of the Delaunay triangulation of $P$ is linear -- the new proof is simpler and more direct, and might be of independent interest. Finally, we present a simple $\tilde{O}(n^{4/3})$ time algorithm for the distance selection problem for $d=2$.
翻译:假设一个固定的美元[0,1]美元,以美元计价,以美元为单位,以美元为单位,以美元为单位,不以美元为单位,以美元为单位,计算一个固定的美元计价。例如,对于一个固定的美元[0,1]美元,我们证明对一对P美元,以美元为单位,在距离以美元计价的双点数是一个新的集中结果 -- -- 我们显示,这个数字存在于一个仅包含O(n\log n)美元数字的间隔中。我们还提出了简单的线性时间算法,以构建Delaunay三角,Euclidean MST, 和$P$的锥体。MST算法是一个有趣的分解算法,可能具有独立的兴趣。我们还提供了一个新的证据,即Delaunay三角对$的预期复杂性是线性 -- 新证据更简单、更直接,而且可能具有独立的兴趣。最后,我们提出了一个简单的美元=2的距离选择问题的时间算法。