Graph pooling is an essential ingredient of Graph Neural Networks (GNNs) in graph classification and regression tasks. For these tasks, different pooling strategies have been proposed to generate a graph-level representation by downsampling and summarizing nodes' features in a graph. However, most existing pooling methods are unable to capture distinguishable structural information effectively. Besides, they are prone to adversarial attacks. In this work, we propose a novel pooling method named as {HIBPool} where we leverage the Information Bottleneck (IB) principle that optimally balances the expressiveness and robustness of a model to learn representations of input data. Furthermore, we introduce a novel structure-aware Discriminative Pooling Readout ({DiP-Readout}) function to capture the informative local subgraph structures in the graph. Finally, our experimental results show that our model significantly outperforms other state-of-art methods on several graph classification benchmarks and more resilient to feature-perturbation attack than existing pooling methods.
翻译:图形集合是图形神经网络(GNNs)在图形分类和回归任务中的一个基本组成部分。 对于这些任务,已经提出了不同的集合战略,通过在图表中下取样和总结节点特征来生成图形级代表。 但是,大多数现有的集合方法无法有效地捕捉可辨别的结构信息。 此外,它们容易发生对抗性攻击。 在这项工作中,我们提议了一个名为{HIBPool}的新颖的集合方法,我们利用信息瓶颈(IB)原则,最佳地平衡了用于学习输入数据的表达方式的模型的清晰度和坚固度。此外,我们引入了一种新颖的结构觉悟差异集合读取功能({DiP-Readout}),以捕捉图中信息丰富的本地子图结构。最后,我们的实验结果表明,我们的模型在几个图形分类基准上大大优于其他州级方法,比现有的集合方法更能适应地进行地干扰攻击。