We extend the study of property testing on hypergraphs initiated by Czumaj and Sohler (Theoretical Computer Science, 2005). Provided oracle access to a hypergraph, our goal is to distinguish between the case it has a certain property and the case it is "far" from having this property. Here, we assume that hypergraphs are represented by bounded-length incidence lists and we measure distances between them as a fraction of the maximum possible number of hyperedges. This contrasts with previous work where representations were given by adjacency matrices and distances by fractions of all possible vertex tuples. Thus, while the previous model is better for studying dense hypergraphs, ours is more effective for testing those of bounded-degree. In particular, our model can be seen as an extension to hypergraphs of the graph testing framework introduced by Goldreich and Ron (Algorithmica, 2002). In this framework, we analyse the query complexity of three fundamental hypergraph properties: colorability, $k$-partiteness, and independence number. We show that $k$-partiteness within families of $k$-uniform $n$-vertex hypergraphs of bounded treewidth is strongly testable. Our algorithm always accepts when the hypergraph is $k$-partite, and rejects with high probability if it is $\varepsilon$-far from $k$-partiteness. In addition, we prove optimal lower bounds of $\Omega(n)$ on the query complexity of testing algorithms for $k$-colorability, $k$-partiteness, and independence number in $k$-uniform $n$-vertex hypergraphs of bounded degree. For each of these properties, as an independently interesting combinatorial question, we consider the problem of explicitly constructing $k$-uniform hypergraphs of bounded degree that differ in $\Theta(n)$ hyperedges from any hypergraph satisfying the property, but where violations of the latter cannot be detected in any neighborhood of $o(n)$ vertices.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
Arxiv
13+阅读 · 2019年11月14日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员