Covariate shift is a common and important assumption in transfer learning and domain adaptation to treat the distributional difference between the training and testing data. We propose a nonparametric test of covariate shift using the conformal prediction framework. The construction of our test statistic combines recent developments in conformal prediction with a novel choice of conformity score, resulting in a valid and powerful test statistic under very general settings. To our knowledge, this is the first successful attempt of using conformal prediction for testing statistical hypotheses. Our method is suitable for modern machine learning scenarios where the data has high dimensionality and large sample sizes, and can be effectively combined with existing classification algorithms to find good conformity score functions. The performance of the proposed method is demonstrated in synthetic and real data examples.
翻译:共变式转换是转移学习和领域适应的一个常见和重要的假设,用于处理培训和测试数据之间的分布差异。我们提议使用符合的预测框架对共变式转移进行非参数性测试。我们测试统计数据的构建将符合性预测的最新发展与新选择的符合性评分相结合,从而在非常一般的环境中产生有效和有力的测试性统计。据我们所知,这是首次成功尝试使用符合性预测来测试统计假设。我们的方法适合现代机器学习情景,即数据具有高度的维度和大样本大小,并且可以有效地与现有的分类算法相结合,以找到良好的符合性评分功能。拟议方法的性能在合成和真实数据实例中得到了证明。