This study considers the partial monitoring problem with $k$-actions and $d$-outcomes and provides the first best-of-both-worlds algorithms, whose regrets are favorably bounded both in the stochastic and adversarial regimes. In particular, we show that for non-degenerate locally observable games, the regret is $O(m^2 k^4 \log(T) \log(k_{\Pi} T) / \Delta_{\min})$ in the stochastic regime and $O(m k^{2/3} \sqrt{T \log(T) \log k_{\Pi}})$ in the adversarial regime, where $T$ is the number of rounds, $m$ is the maximum number of distinct observations per action, $\Delta_{\min}$ is the minimum suboptimality gap, and $k_{\Pi}$ is the number of Pareto optimal actions. Moreover, we show that for globally observable games, the regret is $O(c_{\mathcal{G}}^2 \log(T) \log(k_{\Pi} T) / \Delta_{\min}^2)$ in the stochastic regime and $O((c_{\mathcal{G}}^2 \log(T) \log(k_{\Pi} T))^{1/3} T^{2/3})$ in the adversarial regime, where $c_{\mathcal{G}}$ is a game-dependent constant. We also provide regret bounds for a stochastic regime with adversarial corruptions. Our algorithms are based on the follow-the-regularized-leader framework and are inspired by the approach of exploration by optimization and the adaptive learning rate in the field of online learning with feedback graphs.


翻译:本研究考虑了与美元动作和美元出局的部分监测问题, 提供了首个双世界最佳算法, 这两种算法的歉意在随机和对立机制中都得到了良好的约束。 特别是, 我们显示, 对于非本地可见的脱色游戏来说, 遗憾是 $(m) 2 k ⁇ 4\log( T)\log( k ⁇ P} T) /\ Delta ⁇ min} 。 在沙沙沙制度中 和 美元(m) k ⁇ 2/3} \ sqrt{ T\log (T) 预感 k ⁇ P} 和 对抗机制中, $( log) k ⁇ 3\ pí 。 美元是每个动作的最大不同观测次数, $( Delta ⁇ min} $( 美元) 是最低亚优度差距, 美元是 Paretoal 方法 。 此外, 我们显示, 全球观测游戏时, T- cal2\\\\\\\\\\\\\\\\\\\ t yal yal yal yal yal ex, 在 Salal_ s dal= = $( ======= = ====================================xxxxx===================================================================================xxxxxxxxxxxx)

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月9日
Arxiv
11+阅读 · 2022年9月1日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员