Consider Myerson's optimal auction with respect to an inaccurate prior, e.g., estimated from data, which is an underestimation of the true value distribution. Can the auctioneer expect getting at least the optimal revenue w.r.t. the inaccurate prior since the true value distribution is larger? This so-called strong revenue monotonicity is known to be true for single-parameter auctions when the feasible allocations form a matroid. We find that strong revenue monotonicity fails to generalize beyond the matroid setting, and further show that auctions in the matroid setting are the only downward-closed auctions that satisfy strong revenue monotonicity. On the flip side, we recover an approximate version of strong revenue monotonicity that holds for all single-parameter auctions, even without downward-closedness. As applications, we get sample complexity upper bounds for single-parameter auctions under matroid constraints, downward-closed constraints, and general constraints. They improve the state-of-the-art upper bounds and are tight up to logarithmic factors.
翻译:将Myerson的最佳拍卖视为之前不准确的拍卖, 例如, 从数据中估算出来, 低估了真正的价值分布。 拍卖商能否预期至少获得真正价值分配大些以来的最好收入? 这种所谓的强大的收入单一性在单参数拍卖中是真实的? 当可行的分配形成一个机器人的时候, 我们发现强大的收入单一性无法超越配方环境, 并进一步显示在配方环境中的拍卖是唯一能满足强大的收入单一性的下层封闭拍卖。 在反面方面, 我们回收了所有单参数拍卖所持有的强收入单一度的大致版本, 即使没有下层封闭。 作为应用, 我们得到了单参数拍卖的样本复杂性, 在固态限制、 下层限制和一般限制下层下, 我们得到了单参数拍卖的单一参数的上限。 它们改进了国有的上限, 并且接近逻辑性因素 。