Artificial intelligence has made great progress in medical data analysis, but the lack of robustness and trustworthiness has kept these methods from being widely deployed. As it is not possible to train networks that are accurate in all situations, models must recognize situations where they cannot operate confidently. Bayesian deep learning methods sample the model parameter space to estimate uncertainty, but these parameters are often subject to the same vulnerabilities, which can be exploited by adversarial attacks. We propose a novel ensemble approach based on feature decorrelation and Fourier partitioning for teaching networks diverse complementary features, reducing the chance of perturbation-based fooling. We test our approach on electrocardiogram classification, demonstrating superior accuracy confidence measurement, on a variety of adversarial attacks. For example, on our ensemble trained with both decorrelation and Fourier partitioning scored a 50.18% inference accuracy and 48.01% uncertainty accuracy (area under the curve) on {\epsilon} = 50 projected gradient descent attacks, while a conventionally trained ensemble scored 21.1% and 30.31% on these metrics respectively. Our approach does not require expensive optimization with adversarial samples and can be scaled to large problems. These methods can easily be applied to other tasks for more robust and trustworthy models.


翻译:人工智能在医学数据分析方面取得了巨大进展,但缺乏强健性和可信度使这些方法无法广泛应用。由于不可能对网络进行在所有情况下都准确的培训,模型必须认识到无法自信操作的情况。贝伊斯深深层学习方法抽样模型参数空间,以估计不确定性,但这些参数往往受到同样的弱点的影响,这可以通过对抗性攻击加以利用。我们提出了基于特征装饰和对教学网络不同互补特征的四分法的新式混合法,减少了以扰动为基础的愚弄机会。我们测试了电子心电图分类方法,展示了更高的准确度信心测量,并测试了各种对抗性攻击。例如,我们接受过装饰和四分配混合训练的共合体获得50.18%的推断准确度和48.01%的不确定性(曲线下地区)的精确度,这可以被推至50种预测的梯度下降率攻击,而经过常规培训的共性组合则能为21.1%和30.31 %的愚弄机会。我们采用这些方法对于这些计量标准来说并不需要更昂贵的精确的模型。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员