Text style transfer is the task that generates a sentence by preserving the content of the input sentence and transferring the style. Most existing studies are progressing on non-parallel datasets because parallel datasets are limited and hard to construct. In this work, we introduce a method that follows two stages in non-parallel datasets. The first stage is to delete attribute markers of a sentence directly through a classifier. The second stage is to generate a transferred sentence by combining the content tokens and the target style. We experiment on two benchmark datasets and evaluate context, style, fluency, and semantic. It is difficult to select the best system using only these automatic metrics, but it is possible to select stable systems. We consider only robust systems in all automatic evaluation metrics to be the minimum conditions that can be used in real applications. Many previous systems are difficult to use in certain situations because performance is significantly lower in several evaluation metrics. However, our system is stable in all automatic evaluation metrics and has results comparable to other models. Also, we compare the performance results of our system and the unstable system through human evaluation. Our code and data are available at the link~\footnote{https://github.com/rungjoo/Stable-Style-Transformer}.
翻译:文本样式传输是通过保存输入句的内容和传输样式而生成句子的任务。 多数现有研究正在非平行数据集上取得进展, 因为平行数据集有限且难以构建。 在此工作中, 我们引入了一种方法, 在非平行数据集中遵循两个阶段。 第一阶段是通过分类器直接删除一个句子的属性标记。 第二阶段是通过合并内容符号和目标样式生成一个转移的句子。 我们在两个基准数据集上进行实验, 并评价上下文、 风格、 流利度和语义性。 由于仅使用这些自动计量器, 很难选择最佳系统, 但选择稳定系统。 我们认为, 所有自动评价指标中只有强大的系统是真正应用中可以使用的最低限度条件。 许多以前的系统在特定情况下很难使用, 因为一些评价指标的性能要低得多。 然而, 我们的系统在所有自动评价指标中都保持稳定, 其结果与其他模型相似。 此外, 我们通过人类评价来比较我们系统的业绩和不稳定系统的业绩结果, 但也有可能选择稳定系统。 我们的代码和数据在链接/ Traverformorporporma/ stortilexylear_ sal