In many classical e-commerce platforms, personalized recommendation has been proven to be of great business value, which can improve user satisfaction and increase the revenue of platforms. In this paper, we present a new recommendation problem, Trigger-Induced Recommendation (TIR), where users' instant interest can be explicitly induced with a trigger item and follow-up related target items are recommended accordingly. TIR has become ubiquitous and popular in e-commerce platforms. In this paper, we figure out that although existing recommendation models are effective in traditional recommendation scenarios by mining users' interests based on their massive historical behaviors, they are struggling in discovering users' instant interests in the TIR scenario due to the discrepancy between these scenarios, resulting in inferior performance. To tackle the problem, we propose a novel recommendation method named Deep Interest Highlight Network (DIHN) for Click-Through Rate (CTR) prediction in TIR scenarios. It has three main components including 1) User Intent Network (UIN), which responds to generate a precise probability score to predict user's intent on the trigger item; 2) Fusion Embedding Module (FEM), which adaptively fuses trigger item and target item embeddings based on the prediction from UIN; and (3) Hybrid Interest Extracting Module (HIEM), which can effectively highlight users' instant interest from their behaviors based on the result of FEM. Extensive offline and online evaluations on a real-world e-commerce platform demonstrate the superiority of DIHN over state-of-the-art methods.


翻译:在许多传统的电子商务平台中,个人化建议被证明具有巨大的商业价值,可以提高用户满意度和增加平台收入。在本文中,我们提出了一个新的建议问题,即触发建议(TIR),即用户的瞬间兴趣可以明确地以触发项目引起,并相应建议相关目标项目;TIR已经变得无处不在,在电子商务平台中很受欢迎。在本文中,我们发现,虽然现有建议模式在传统建议情景中是有效的,因为采矿用户根据其巨大的历史行为而对其感兴趣的传统建议情景而言,可以提高用户的满意度和增加平台的收入。由于这些情景之间的差异,我们提出了一个新的建议问题,即Triggger-诱导建议(TIR),其中用户的瞬间利益可明确引起触发TIR节率预测的触发点高端网络(DI),它有三个主要组成部分,包括:(1) 用户意向网络(UIN),它能产生准确的概率分数,以预测用户对触发项目的意向;(2) 泡沫嵌入模块(FEM),该模块基于适应性保险的链接,从而有效显示其深度预测和目标的IMEM结果。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
2021 推荐系统领域最新研究进展
图与推荐
1+阅读 · 2021年10月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关VIP内容
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
2021 推荐系统领域最新研究进展
图与推荐
1+阅读 · 2021年10月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员