We develop a novel credit assignment algorithm for information processing with spiking neurons without requiring feedback synapses. Specifically, we propose an event-driven generalization of the forward-forward and the predictive forward-forward learning processes for a spiking neural system that iteratively processes sensory input over a stimulus window. As a result, the recurrent circuit computes the membrane potential of each neuron in each layer as a function of local bottom-up, top-down, and lateral signals, facilitating a dynamic, layer-wise parallel form of neural computation. Unlike spiking neural coding, which relies on feedback synapses to adjust neural electrical activity, our model operates purely online and forward in time, offering a promising way to learn distributed representations of sensory data patterns with temporal spike signals. Notably, our experimental results on several pattern datasets demonstrate that the even-driven forward-forward (ED-FF) framework works well for training a dynamic recurrent spiking system capable of both classification and reconstruction.
翻译:我们为信息处理开发了一种新的信用分配算法,其中不需要反馈突触来处理尖峰神经元。具体而言,我们提出了一个事件驱动的前向-前向和预测性前向-前向学习过程的新颖概念,适用于逐步处理感官输入的尖峰神经系统在一个刺激窗口上。结果,递归电路计算每个层中每个神经元的膜电位作为局部自下而上、自上而下和横向信号的函数,实现一种动态、层次并行的神经计算形式。与尖峰神经编码不同,它依赖反馈突触来调整神经电活动, 我们的模型纯粹在线和正向进行,提供了一种学习具有时间脉冲信号的感官数据模式分布式表示的有希望的方法。值得注意的是,我们在几组模式数据集上的实验结果表明,事件驱动前向前向 (ED-FF) 框架适用于训练具有分类和重构能力的动态递归尖峰系统。