We propose an efficient, distributed, out-of-memory implementation of the truncated singular value decomposition (t-SVD) for heterogeneous (CPU+GPU) high performance computing (HPC) systems. Various implementations of SVD have been proposed, but most only estimate the singular values as an estimation of the singular vectors which can significantly increase the time and memory complexity of the algorithm. In this work, we propose an implementation of SVD based on the power method, which is a truncated singular values and singular vectors estimation method. Memory utilization bottlenecks seen in the power method are typically associated with the computation of the Gram matrix $\mat{A}^T\mat{A}$, which can be significant when $\mat{A}$ is large and dense, or when $\mat{A}$ is super-large and sparse. The proposed implementation is optimized for out-of-memory problems where the memory required to factorize a given matrix is greater than the available GPU memory. We reduce the memory complexity of $\mat{A}^T\mat{A}$ by using a batching strategy where the intermediate factors are computed block by block. We also suppress I/O latency associated with both host-to-device (H2D) and device-to-host (D2H) batch copies by overlapping each batch copy with compute using CUDA streams. Furthermore, we use optimized \textit{NCCL} based communicators to reduce the latency associated with collective communications (both intra-node and inter-node). In addition, sparse and dense matrix multiplications are significantly accelerated with GPU cores (or tensors cores when available), resulting in an implementation with good scaling. We demonstrate the scalability of our distributed out of core SVD algorithm to successfully decompose dense matrix of size 1TB and sparse matrix of size 128PB with 1e-6 sparsity.


翻译:我们建议对混杂(CPU+GPU)高性能计算(HPC)系统采用高效、分布、超模的单值分解方法。 已经提出了实施 SVD 的各种建议, 但大多数只是将单向矢量估算为单向量, 这会大大增加算法的时间和记忆复杂性。 在这项工作中, 我们建议基于电源方法实施 SVD, 这是一种超速的单值和单向矢量估测方法。 电源方法中看到的内存利用率瓶颈通常与计算 Gram 基质( CPU+GPU) 高性能计算( CPU+GPU) 。 当$\mat{A\\T\mat{A} $是大和密度, 或者当$\mat{A} 时, 单向单向单向单向量矢量矢量矢量矢量矢量计算时, 可以显著地进行计算。 提议的执行对于超模的问题, 最优化的内向内向内存到比现有的 GPU记忆( 。 我们降低了$=D的记忆复杂性) 和直流的内基的内压 和内基 的内压 和内压的内压- 和内压的内压的内压 。

0
下载
关闭预览

相关内容

奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解,奇异值分解则是特征分解在任意矩阵上的推广。在信号处理、统计学等领域有重要应用。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
105+阅读 · 2020年5月3日
专知会员服务
59+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月6日
Arxiv
38+阅读 · 2021年8月31日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
105+阅读 · 2020年5月3日
专知会员服务
59+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员