Image enhancement is a subjective process whose targets vary with user preferences. In this paper, we propose a deep learning-based image enhancement method covering multiple tonal styles using only a single model dubbed StarEnhancer. It can transform an image from one tonal style to another, even if that style is unseen. With a simple one-time setting, users can customize the model to make the enhanced images more in line with their aesthetics. To make the method more practical, we propose a well-designed enhancer that can process a 4K-resolution image over 200 FPS but surpasses the contemporaneous single style image enhancement methods in terms of PSNR, SSIM, and LPIPS. Finally, our proposed enhancement method has good interactability, which allows the user to fine-tune the enhanced image using intuitive options.
翻译:图像增强是一个主观过程, 其目标随用户偏好而不同。 在本文中, 我们只用一个名为StarEnhancer 的单一模型, 提出一个包含多线性风格的深层次学习图像增强方法。 它可以将图像从一个线性风格转换为另一个图像, 即使这种风格是看不见的。 使用简单的一次性设置, 用户可以自定义模型, 使增强图像更符合其审美性。 为使方法更加实用, 我们提议了一个设计完善的增强器, 它可以处理超过200 FPS 的 4K 分辨率图像, 但超过 PSNR、 SSIM 和 LPIPS 的同步单一风格图像增强方法。 最后, 我们提议的增强方法具有良好的交互性, 使用户能够使用直观选项微调增强的图像。