Bruch's membrane (BM) segmentation on optical coherence tomography (OCT) is a pivotal step for the diagnosis and follow-up of age-related macular degeneration (AMD), one of the leading causes of blindness in the developed world. Automated BM segmentation methods exist, but they usually do not account for the anatomical coherence of the results, neither provide feedback on the confidence of the prediction. These factors limit the applicability of these systems in real-world scenarios. With this in mind, we propose an end-to-end deep learning method for automated BM segmentation in AMD patients. An Attention U-Net is trained to output a probability density function of the BM position, while taking into account the natural curvature of the surface. Besides the surface position, the method also estimates an A-scan wise uncertainty measure of the segmentation output. Subsequently, the A-scans with high uncertainty are interpolated using thin plate splines (TPS). We tested our method with ablation studies on an internal dataset with 138 patients covering all three AMD stages, and achieved a mean absolute localization error of 4.10 um. In addition, the proposed segmentation method was compared against the state-of-the-art methods and showed a superior performance on an external publicly available dataset from a different patient cohort and OCT device, demonstrating strong generalization ability.
翻译:Bruch 的膜膜(BM) 光学一致性断层(OCT) 是诊断和跟踪发达世界失明的主要原因之一 -- -- 与年龄有关的肌肉变形(AMD)的关键步骤。 自动的BM分层方法存在, 但这些方法通常并不说明结果的解剖一致性, 也没有提供预测可信度的反馈。 这些因素限制了这些系统在现实世界情景中的适用性。 考虑到这一点, 我们提议了一种终端到终端的深层次学习方法, 用于在AMD病人中自动的BM分层(AMD) 。 注意 U- Net 被训练可以输出BM 位置的概率密度功能, 同时考虑到表层的自然曲度。 除表面位置外, 该方法还估计了结果的解析的解析性度。 随后, 具有高度不确定性的A型扫描系统使用薄板条纹(TPS) 进行内插图。 我们用内部数据集进行测试的方法, 与138个病人进行了对比研究, 覆盖AMD的所有三个阶段, 并实现了BM 位置的概率密度值, 同时, 也展示了一种绝对的外部演化方法。