Utilizing the trained model under different conditions without data annotation is attractive for robot applications. Towards this goal, one class of methods is to translate the image style from another environment to the one on which models are trained. In this paper, we propose a weakly-paired setting for the style translation, where the content in the two images is aligned with errors in poses. These images could be acquired by different sensors in different conditions that share an overlapping region, e.g. with LiDAR or stereo cameras, from sunny days or foggy nights. We consider this setting to be more practical with: (i) easier labeling than the paired data; (ii) better interpretability and detail retrieval than the unpaired data. To translate across such images, we propose PREGAN to train a style translator by intentionally transforming the two images with a random pose, and to estimate the given random pose by differentiable non-trainable pose estimator given that the more aligned in style, the better the estimated result is. Such adversarial training enforces the network to learn the style translation, avoiding being entangled with other variations. Finally, PREGAN is validated on both simulated and real-world collected data to show the effectiveness. Results on down-stream tasks, classification, road segmentation, object detection, and feature matching show its potential for real applications. https://github.com/wrld/PRoGAN


翻译:在不作数据注释的不同条件下使用经过培训的模型对机器人应用具有吸引力。 为了实现这一目标, 一种方法是将图像样式从另一个环境转换为培训模型所依据的环境。 在本文中, 我们建议为样式翻译设置一个微弱的平坦的设置, 使两种图像的内容与配置错误相一致。 这些图像可以由不同传感器在不同的条件下获取, 这些不同条件与区域相重叠, 例如与LiDAR或立体摄像机, 从阳光明亮的日子或雾暗的夜晚。 我们认为这一设置更为实用, 包括:(一) 标签比配对的数据更容易;(二) 比未配置的数据更容易解释和详细检索。 为了翻译这些图像, 我们建议 PREGAN 培训一个风格翻译器, 有意将两种图像与外观相匹配。 最后, PREGAN 正在通过不同且不可调控的外观性配置来估计给定的随机配置, 因为在风格上更加一致, 估计的结果会更好。 这样的对调性培训使网络能够学习对象风格翻译, 避免与真实数据缠绕, 与其他变换, 。 最后, PRAAN 将 显示功能 显示 性 性 格式 显示 格式 。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
23+阅读 · 2019年12月15日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
7+阅读 · 2018年11月27日
Arxiv
8+阅读 · 2018年5月1日
Arxiv
3+阅读 · 2018年4月11日
VIP会员
Top
微信扫码咨询专知VIP会员