Topic models have been successfully used for analyzing text documents. However, with existing topic models, many documents are required for training. In this paper, we propose a neural network-based few-shot learning method that can learn a topic model from just a few documents. The neural networks in our model take a small number of documents as inputs, and output topic model priors. The proposed method trains the neural networks such that the expected test likelihood is improved when topic model parameters are estimated by maximizing the posterior probability using the priors based on the EM algorithm. Since each step in the EM algorithm is differentiable, the proposed method can backpropagate the loss through the EM algorithm to train the neural networks. The expected test likelihood is maximized by a stochastic gradient descent method using a set of multiple text corpora with an episodic training framework. In our experiments, we demonstrate that the proposed method achieves better perplexity than existing methods using three real-world text document sets.
翻译:分析文本文件成功地使用了主题模型。 但是,利用现有主题模型, 需要许多文件进行培训。 在本文中, 我们建议了一种基于神经网络的微小学习方法, 可以从几个文件中学习一个主题模型。 我们模型中的神经网络使用少量文件作为投入, 并使用产出主题模型前缀。 拟议的方法对神经网络进行了培训, 以便在利用基于EM 算法的前缀来估计主题模型参数时, 通过尽量扩大后发概率来提高预期的测试可能性。 由于EM 算法的每个步骤都是不同的, 提议的方法可以通过EM 算法来反向描述损失, 以培训神经网络。 使用一组多文本的梯度梯度脱落法, 使用一套附着培训框架, 将预期的测试可能性最大化。 在我们的实验中, 我们证明, 拟议的方法比使用三种真实世界文本文档集的现有方法更复杂。