Message passing is a fundamental element in software development, ranging from concurrent and mobile computing to distributed services, but it suffers from communication errors such as deadlocks. Session types are a typing discipline for enforcing safe structured interactions between multiple participants. However, each typed interaction is restricted to having one fixed sender and one fixed receiver. In this paper, we extend session types with existential branching types, to handle a common interaction pattern with multiple senders and a single receiver in a synchronized setting, i.e. a receiver is available to receive messages from multiple senders, and which sender actually participates in the interaction cannot be determined till execution. We build the type system with existential branching types, which retain the important properties induced by standard session types: type safety, progress (i.e. deadlock-freedom), and fidelity. We further provide a novel communication type system to guarantee progress of dynamically interleaved multiparty sessions, by abandoning the strong restrictions of existing type systems. Finally, we encode Rust multi-thread primitives in the extended session types to show its expressivity, which can be considered as an attempt to check the deadlock-freedom of Rust multi-thread programs.
翻译:暂无翻译