This paper presents a sample-efficient data-driven method to design model predictive control (MPC) for cable-actuated soft robotics using Bayesian optimization. Instead of modeling the complex dynamics of the soft robots, the proposed approach uses Bayesian optimization to search the best-guessed low-dimensional prediction model and its associated controller to minimize the objective function of closed-loop responses. The prediction model is updated by Bayesian optimization from the closed-loop input-output data in each iteration. A linear MPC is then designed based on the updated prediction model, and evaluated based on the closed-loop responses. Different from directly searching controller parameters, the closed-loop system stability, and inputs/outputs constraints can be easily handled in the MPC design. After a few iterations, a convergent solution of a (sub-)optimal controller can be obtained, which minimizes the user-defined closed-loop performance index. The proposed method is simulated and validated by a high-fidelity simulation of a cable-actuated soft robot. The simulation results demonstrate that the proposed approach can achieve desired tracking controller for the soft robot without a prior-known model.
翻译:本文展示了一种抽样高效的数据驱动方法,用于设计使用贝叶西亚优化的电缆活性软机器人模型预测控制(MPC) 。 提议的方法不是模拟软机器人的复杂动态,而是利用贝叶西亚优化搜索最佳猜测的低维预测模型及其相关控制器,以最大限度地减少闭路反应的客观功能。 预测模型由巴伊西亚优化从每次循环的闭路输入-输出数据中更新。 然后,根据更新的预测模型设计线性 MPC,并根据闭路反应进行评估。 与直接搜索控制器参数、闭路系统稳定性和输入/输出限制不同,可以在MPC的设计中轻松处理。 经过几处迭代后,可以获得一个(次)最佳控制器的趋同式解决方案,从而最大限度地减少用户定义的闭路运行性性能指数。 拟议的方法通过对电缆活性软机器人的高纤维性模拟进行模拟和验证。 模拟结果显示,提议的软机器人的软性控制器方法可以在不理解之前实现所需的软性控制器跟踪。