We study the problem of outlier robust high-dimensional mean estimation under a finite covariance assumption, and more broadly under finite low-degree moment assumptions. We consider a standard stability condition from the recent robust statistics literature and prove that, except with exponentially small failure probability, there exists a large fraction of the inliers satisfying this condition. As a corollary, it follows that a number of recently developed algorithms for robust mean estimation, including iterative filtering and non-convex gradient descent, give optimal error estimators with (near-)subgaussian rates. Previous analyses of these algorithms gave significantly suboptimal rates. As a corollary of our approach, we obtain the first computationally efficient algorithm with subgaussian rate for outlier-robust mean estimation in the strong contamination model under a finite covariance assumption.
翻译:我们研究了在有限的共变假设下,以及更广泛地在有限的低度时空假设下,超强高维平均估计的问题。我们从最近的稳健统计文献中考虑一个标准稳定性条件,并证明除了极小的失灵概率外,存在满足这一条件的很大一部分离子体。由此推论,最近为稳健平均估计而开发的一些算法,包括迭代过滤和非冷却梯度下降,给出了(近于)subgaussian比率的最佳误差估计器。对这些算法的先前分析给出了显著的次优率。作为我们方法的必然结果,我们在一个有限的共变假设下,在强污染模型中获得了第一个计算高效的计算算法,其中含有超大肠杆平均估计率。