Due to their superior energy efficiency, blimps may replace quadcopters for long-duration aerial tasks. However, designing a controller for blimps to handle complex dynamics, modeling errors, and disturbances remains an unsolved challenge. One recent work combines reinforcement learning (RL) and a PID controller to address this challenge and demonstrates its effectiveness in real-world experiments. In the current work, we build on that using an H-infinity robust controller to expand the stability margin and improve the RL agent's performance. Empirical analysis of different mixing methods reveals that the resulting H-infinity-RL controller outperforms the prior PID-RL combination and can handle more complex tasks involving intensive thrust vectoring. We provide our code as open-source at https://github.com/robot-perception-group/robust_deep_residual_blimp.
翻译:由于其更高的能源效率,气球可以取代四旋翼飞行器执行长时间的空中任务。然而,设计能应对复杂动力学、建模误差和干扰的控制器仍然是一个尚未解决的挑战。最近的研究结合强化学习(RL)和PID控制器来解决这个挑战,并在实际实验中证明了其有效性。在当前工作中,我们基于此,利用H-无穷鲁棒控制器来扩大稳定边界并提高RL智能体的性能。关于不同混合方法的经验分析表明,结果证明基于H-无穷鲁棒深度残差强化学习的控制器优于之前的PID/RL组合,并且可以处理涉及积极推力矢量的更复杂任务。我们将我们的代码作为开源提供在 https://github.com/robot-perception-group/robust_deep_residual_blimp。