We study stochastic sequences $\xi(k)$ with periodically stationary generalized multiple increments of fractional order which combines cyclostationary, multi-seasonal, integrated and fractionally integrated patterns. We solve the filtering problem for linear functionals constructed from unobserved values of a stochastic sequence $\xi(k)$ based on observations with the periodically stationary noise sequence. For sequences with known matrices of spectral densities, we obtain formulas for calculating values of the mean square errors and the spectral characteristics of the optimal estimates of the functionals. Formulas that determine the least favorable spectral densities and minimax (robust) spectral characteristics of the optimal linear estimates of the functionals are proposed in the case where spectral densities of sequences are not exactly known while some sets of admissible spectral densities are given.


翻译:我们研究的是固定的分序增量,这些分序结合了循环静止、多季节、综合和分集集的形态。我们根据对定期固定噪音序列的观测结果,解决了从未观测到的分序值中构建的线性功能过滤问题。对于光谱密度的已知矩阵序列,我们获得了计算平均平方差值和功能最佳估计光谱特性的公式。在给出某些可接受光谱密度的同时,对光谱频谱密度不完全已知的情况下,提出了确定功能最佳线性估计的最优光谱密度和微量光谱特征的公式。

0
下载
关闭预览

相关内容

【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年12月2日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
Top
微信扫码咨询专知VIP会员