Tracking and identifying players is a fundamental step in computer vision-based ice hockey analytics. The data generated by tracking is used in many other downstream tasks, such as game event detection and game strategy analysis. Player tracking and identification is a challenging problem since the motion of players in hockey is fast-paced and non-linear when compared to pedestrians. There is also significant camera panning and zooming in hockey broadcast video. Identifying players in ice hockey is challenging since the players of the same team look almost identical, with the jersey number the only discriminating factor between players. In this paper, an automated system to track and identify players in broadcast NHL hockey videos is introduced. The system is composed of three components (1) Player tracking, (2) Team identification and (3) Player identification. Due to the absence of publicly available datasets, the datasets used to train the three components are annotated manually. Player tracking is performed with the help of a state of the art tracking algorithm obtaining a Multi-Object Tracking Accuracy (MOTA) score of 94.5%. For team identification, the away-team jerseys are grouped into a single class and home-team jerseys are grouped in classes according to their jersey color. A convolutional neural network is then trained on the team identification dataset. The team identification network gets an accuracy of 97% on the test set. A novel player identification model is introduced that utilizes a temporal one-dimensional convolutional network to identify players from player bounding box sequences. The player identification model further takes advantage of the available NHL game roster data to obtain a player identification accuracy of 83%.


翻译:跟踪和识别玩家是计算机基于视觉的冰球曲棍球分析中的一个基本步骤。 跟踪生成的数据被用于许多其他下游任务, 如游戏事件探测和游戏策略分析。 玩家跟踪和识别是一个具有挑战性的问题, 因为曲棍球球玩家的运动与行人相比速度快且非线性。 在曲棍球广播视频中, 也有大量的相机分布和放大。 识别冰球玩家具有挑战性, 因为同一球队的玩家看起来几乎完全相同, 球衣编号是唯一的分级因素。 在本文中, 引入了一个自动系统, 跟踪和识别播放 NHEL 曲棍球视频中玩家的准确性。 该系统由三个部分组成:(1) 玩家跟踪、 (2) 团队识别和(3) 玩家识别。 由于缺少公开可用的数据集, 用于培训这三部分的播放器播放视频视频视频视频视频视频。 玩家跟踪使用艺术跟踪算法, 获得多轨跟踪模型的精度(MOTA) 评分为94.5 %。 对于团队的识别, 远程识别, 从播放器识别, 从播放器的远程游戏运行的精度, 从播放游戏的精度系统将一组的精度定位转换到一个游戏的精度显示到游戏的精度的精度, 级的精度网络的精度, 进入到单个的精度的精度网络的精度网络的精度的精度。 在单级的精度网络的精度的精度, 级的精度网络的精度, 将一组的精度记录到单个的精度序列到单个的精度序列到单个的精度。 。 。

0
下载
关闭预览

相关内容

【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
17+阅读 · 2019年10月9日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
17+阅读 · 2021年3月29日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Arxiv
5+阅读 · 2018年5月22日
Arxiv
6+阅读 · 2018年2月8日
VIP会员
相关VIP内容
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
17+阅读 · 2019年10月9日
Top
微信扫码咨询专知VIP会员