Discrete-time discrete-state finite Markov chains are versatile mathematical models for a wide range of real-life stochastic processes. One of most common tasks in studies of Markov chains is computation of the stationary distribution. Without loss of generality, and drawing our motivation from applications to large networks, we interpret this problem as one of computing the stationary distribution of a random walk on a graph. We propose a new controlled, easily distributed algorithm for this task, briefly summarized as follows: at the beginning, each node receives a fixed amount of cash (positive or negative), and at each iteration, some nodes receive `green light' to distribute their wealth or debt proportionally to the transition probabilities of the Markov chain; the stationary probability of a node is computed as a ratio of the cash distributed by this node to the total cash distributed by all nodes together. Our method includes as special cases a wide range of known, very different, and previously disconnected methods including power iterations, Gauss-Southwell, and online distributed algorithms. We prove exponential convergence of our method, demonstrate its high efficiency, and derive scheduling strategies for the green-light, that achieve convergence rate faster than state-of-the-art algorithms.


翻译:离散的离散状态-离散的离散-状态的Markov 链链是用于一系列广泛实际生活随机过程的多功能数学模型。Markov 链系研究中最常见的一项最常见的任务是计算固定分布。在不丧失一般性的情况下,并将我们的动力从应用程序中吸引到大型网络中,我们将这一问题解释为计算图中随机行走的固定分布。我们为此任务提出了一个新的受控的、容易分配的算法,简要概述如下:在开始时,每个节点都收到固定数量的现金(正或负),在每一次循环中,一些节点得到“绿光”来按比例分配其财富或债务,以与马尔科夫链的过渡概率成比例;节点的固定概率被算为通过该节点分配的现金与所有节点一起分配的现金总额之间的比率。我们的方法包括一系列已知的、非常不同的和以前不相通的方法,包括权力的重复、计价-南价和在线分布的算法。我们证明了方法的指数趋同性趋同性,展示其效率高的趋同率,并计算出绿色速度,从而实现绿色趋同状态。

0
下载
关闭预览

相关内容

马尔可夫链,因安德烈·马尔可夫(A.A.Markov,1856-1922)得名,是指数学中具有马尔可夫性质的离散事件随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当前以前的历史状态)对于预测将来(即当前以后的未来状态)是无关的。 在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。状态的改变叫做转移,与不同的状态改变相关的概率叫做转移概率。随机漫步就是马尔可夫链的例子。随机漫步中每一步的状态是在图形中的点,每一步可以移动到任何一个相邻的点,在这里移动到每一个点的概率都是相同的(无论之前漫步路径是如何的)。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
109+阅读 · 2020年3月12日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
4+阅读 · 2020年1月6日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Arxiv
0+阅读 · 2021年11月11日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
5+阅读 · 2018年4月22日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
109+阅读 · 2020年3月12日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
已删除
将门创投
4+阅读 · 2020年1月6日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关论文
Top
微信扫码咨询专知VIP会员