Suppose that a transmitter Alice potentially wishes to communicate with a receiver Bob over an adversarially jammed binary channel. An active adversary James eavesdrops on their communication over a binary symmetric channel (BSC(q)), and may maliciously flip (up to) a certain fraction p of their transmitted bits based on his observations. We consider a setting where the communication must be simultaneously covert as well as reliable, i.e., James should be unable to accurately distinguish whether or not Alice is communicating, while Bob should be able to correctly recover Alice's message with high probability regardless of the adversarial jamming strategy. We show that, unlike the setting with passive adversaries, covert communication against active adversaries requires Alice and Bob to have a shared key (of length at least Omega(log n)) even when Bob has a better channel than James. We present lower and upper bounds on the information-theoretically optimal throughput as a function of the channel parameters, the desired level of covertness, and the amount of shared key available. These bounds match for a wide range of parameters of interest. We also develop a computationally efficient coding scheme (based on concatenated codes) when the amount of shared key available is $\Omega(\sqrt{n} \log n)$, and further show that this scheme can be implemented with much less amount of shared key when the adversary is assumed to be computationally bounded.


翻译:假设一个发报机 Alice 可能希望与一个接收器 Bob 在一个对抗性卡塞的二进制频道上进行沟通。 一个活跃的对手James 窃听他们在二进制对称频道( BSC(q) ) 上的通信,并可能恶意翻翻( 翻翻) 其传输的位子的某个部分。 我们考虑一个这样的设置,即通信必须同时隐蔽和可靠, 詹姆斯应该无法准确区分爱丽丝是否在沟通, 而Bob应该能够准确地收回爱丽丝的信息, 不论对抗性干扰策略如何。 我们表明, 与被动对手的设置不同, 秘密沟通要求爱丽丝和鲍勃有一个共享的密钥( 至少Omega(log n) ), 即使 Bob 拥有比 James 更好的渠道。 我们把信息- 理论上的最佳传输量作为频道参数的函数, 想要的隐蔽程度, 以及共享的密钥的密钥数量, 我们也可以在共享的任意计算公式中进行更多的计算。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
PRL导读-2018年120卷15期
中科院物理所
4+阅读 · 2018年4月23日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月26日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关VIP内容
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
PRL导读-2018年120卷15期
中科院物理所
4+阅读 · 2018年4月23日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员