Understanding the determinants underlying variations in urban health status is important for informing urban design and planning, as well as public health policies. Multiple heterogeneous urban features could modulate the prevalence of diseases across different neighborhoods in cities and across different cities. This study examines heterogeneous features related to socio-demographics, population activity, mobility, and the built environment and their non-linear interactions to examine intra- and inter-city disparity in prevalence of four disease types: obesity, diabetes, cancer, and heart disease. Features related to population activity, mobility, and facility density are obtained from large-scale anonymized mobility data. These features are used in training and testing graph attention network (GAT) models to capture non-linear feature interactions as well as spatial interdependence among neighborhoods. We tested the models in five U.S. cities across the four disease types. The results show that the GAT model can predict the health status of people in neighborhoods based on the top five determinant features. The findings unveil that population activity and built-environment features along with socio-demographic features differentiate the health status of neighborhoods to such a great extent that a GAT model could predict the health status using these features with high accuracy. The results also show that the model trained on one city can predict health status in another city with high accuracy, allowing us to quantify the inter-city similarity and discrepancy in health status. The model and findings provide novel approaches and insights for urban designers, planners, and public health officials to better understand and improve health disparities in cities by considering the significant determinant features and their interactions.


翻译:了解城市健康状况差异的决定因素对于为城市设计和规划以及公共卫生政策提供信息十分重要。多种不同的城市特征可以调节城市和城市不同城市不同街区疾病流行情况。本研究审查了社会人口、人口活动、流动性、建筑环境及其非线性互动等与社会人口、人口活动、人口活动、流动性、建筑环境及其非线性互动有关的不同特征,以检查城市内部和城市间在四种疾病(肥胖症、糖尿病、癌症和心脏病)发病率方面的差距。与人口活动、流动性和设施密度有关的特点,来自大规模匿名流动数据。这些特征可用于培训和测试图表关注网络(GAT)模型,以了解非线性特征相互作用以及各社区之间的空间相互依存。我们研究了五个美国城市的社会人口、人口活动、流动、建筑环境密度等模式及其非线性互动情况。结果显示,GAT模型可以根据五大决定因素预测社区居民的健康状况状况,同时从社会-人口结构特征中区分社区健康状况。这些特征用于培训和城市之间空间状况的模型可以以更精确的方式预测城市健康状况。通过这些特征、经过培训的准确性来预测城市健康状况。

0
下载
关闭预览

相关内容

图注意力网络(Graph Attention Network,GAT),它通过注意力机制(Attention Mechanism)来对邻居节点做聚合操作,实现了对不同邻居权重的自适应分配,从而大大提高了图神经网络模型的表达能力。
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
82+阅读 · 2022年7月16日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
15+阅读 · 2019年4月4日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关论文
Arxiv
82+阅读 · 2022年7月16日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
15+阅读 · 2019年4月4日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员