This paper introduces FlexCodeTS, a new conditional density estimator for time series. FlexCodeTS is a flexible nonparametric conditional density estimator, which can be based on an arbitrary regression method. It is shown that FlexCodeTS inherits the rate of convergence of the chosen regression method. Hence, FlexCodeTS can adapt its convergence by employing the regression method that best fits the structure of data. From an empirical perspective, FlexCodeTS is compared to NNKCDE and GARCH in both simulated and real data. FlexCodeTS is shown to generally obtain the best performance among the selected methods according to either the CDE loss or the pinball loss.
翻译:本文介绍FlexCodeTS,这是时间序列的一个新的有条件密度估计器。FlexCodeTS是一个灵活的非参数性有条件密度估计器,可以任意回归法为基础。它表明,FlexCodeTS继承了所选回归法的趋同率。因此,FlexCodeTS可以通过采用最符合数据结构的回归法调整其趋同率。从经验角度看,FlexCodeTS在模拟和实际数据中都与NNKCDE和GARCHH进行了比较。FlexCodeTS显示,根据CDE损失或弹珠损失,一般在选定的方法中取得最佳性能。