We study the fundamental problem of fairly dividing a set of indivisible items among agents with (general) monotone valuations. The notion of envy-freeness up to any item (EFX) is considered to be one of the most fascinating fairness concepts in this line of work. Unfortunately, despite significant efforts, existence of EFX allocations is a major open problem in fair division, thereby making the study of approximations and relaxations of EFX a natural line of research. Recently, Caragiannis et al. introduced a promising relaxation of EFX, called epistemic EFX (EEFX). We say an allocation to be EEFX if, for every agent, it is possible to shuffle the items in the remaining bundles so that she becomes "EFX-satisfied". Caragiannis et al. prove existence and polynomial-time computability of EEFX allocations for additive valuations. A natural question asks what happens when we consider valuations more general than additive? We address this important open question and answer it affirmatively by establishing the existence of EEFX allocations for an arbitrary number of agents with general monotone valuations. To the best of our knowledge, EEFX is the only known relaxation of EFX to have such strong existential guarantees. Furthermore, we complement our existential result by proving computational and information-theoretic lower bounds. We prove that even for an arbitrary number of (more than one) agents with identical submodular valuations, it is PLS-hard to compute EEFX allocations and it requires exponentially-many value queries to do so.
翻译:暂无翻译