An edge-weighted, vertex-capacitated graph G is called stable if the value of a maximum-weight capacity-matching equals the value of a maximum-weight fractional capacity-matching. Stable graphs play a key role in characterizing the existence of stable solutions for popular combinatorial games that involve the structure of matchings in graphs, such as network bargaining games and cooperative matching games. The vertex-stabilizer problem asks to compute a minimum number of players to block (i.e., vertices of G to remove) in order to ensure stability for such games. The problem has been shown to be solvable in polynomial-time, for unit-capacity graphs. This stays true also if we impose the restriction that the set of players to block must not intersect with a given specified maximum matching of G. In this work, we investigate these algorithmic problems in the more general setting of arbitrary capacities. We show that the vertex-stabilizer problem with the additional restriction of avoiding a given maximum matching remains polynomial-time solvable. Differently, without this restriction, the vertex-stabilizer problem becomes NP-hard and even hard to approximate, in contrast to the unit-capacity case. Finally, in unit-capacity graphs there is an equivalence between the stability of a graph, existence of a stable solution for network bargaining games, and existence of a stable solution for cooperative matching games. We show that this equivalence does not extend to the capacitated case.
翻译:如果最大重量能力匹配值等于最大重量分量能力匹配值,则称为“边缘加权、顶端能动的图形 G ” 将被称为“稳定 ” 。 对于单位能力图形来说, 最重量能力匹配值等于最大重量分量分量能力匹配值。 稳定图形在描述涉及图表中匹配结构的流行组合游戏的稳定解决方案的存在方面发挥着关键作用, 其中包括网络谈判游戏和合作匹配游戏等图表中的匹配结构。 顶端稳定化问题要求计算最小数目的玩家屏蔽( 即 G 的顶级游戏要删除), 以确保这种游戏的稳定性。 对于单位能力图表来说, 问题已经显现出来, 在混合时间和分量匹配时, 问题是不可溶解的。 稳定性游戏的固定性游戏, 最后是稳定的, 稳定性游戏的固定性游戏, 最后是稳定的, 坚固的, 坚固的平准性, 最终是稳定的, 稳定的, 坚固的, 坚固的平准性, 最不稳定性, 最不稳定的, 最不稳定性, 最不稳定的, 的, 最不稳定性, 最不稳定性, 的, 最不稳定性, 最不稳定性, 的, 的, 最不稳定性, 在最后的, 的, 的, 的, 最不稳定性, 的, 最不稳定性, 最不稳定性, 的, 最不稳定性, 的, 最不稳定性, 直的, 的, 最不稳定性, 直的, 直的, 的, 的, 的, 直的, 的, 的, 的, 直的平的, 的, 直的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的, 直的平的, 直的, 直的, 直的,, 直的,,, 直的, 在,, 直,,, 直的, 直的, 直的, 直的,,,,,,,,,,,, 直, 在, 在, 直,,