This paper explores the performance of Google's Edge TPU on feed forward neural networks. We consider Edge TPU as a hardware platform and explore different architectures of deep neural network classifiers, which traditionally has been a challenge to run on resource constrained edge devices. Based on the use of a joint-time-frequency data representation, also known as spectrogram, we explore the trade-off between classification performance and the energy consumed for inference. The energy efficiency of Edge TPU is compared with that of widely-used embedded CPU ARM Cortex-A53. Our results quantify the impact of neural network architectural specifications on the Edge TPU's performance, guiding decisions on the TPU's optimal operating point, where it can provide high classification accuracy with minimal energy consumption. Also, our evaluations highlight the crossover in performance between the Edge TPU and Cortex-A53, depending on the neural network specifications. Based on our analysis, we provide a decision chart to guide decisions on platform selection based on the model parameters and context.
翻译:本文探讨谷歌的Edge TPU在饲料前神经网络上的功能。 我们认为 Edge TPU是一个硬件平台,并探索深神经网络分类器的不同结构,这在传统上一直是在资源限制边缘装置上运行的挑战。基于使用联合时间-频率数据表示法(又称光谱图),我们探讨了分类性能与用于推断的能量之间的权衡。电磁 TPU的能源效率与广泛使用的嵌入式CPU ARM Cortex-A53的能源效率进行了比较。我们的结果量化了神经网络建筑规格对Edge TPU的性能的影响,指导了在最佳操作点上的决定,可以提供高分类精度的能源消耗量。此外,我们的评估还根据神经网络的规格,突出了Edge TPU和Cortex-A53的性能交叉性能。我们根据我们的分析,为根据模型参数和背景选择平台的决定提供指导。