We study the privacy implications of deploying recurrent neural networks (RNNs) in machine learning models. We focus on a class of privacy threats, called membership inference attacks (MIAs), which aim to infer whether or not specific data records have been used to train a model. Considering three machine learning applications, namely, machine translation, deep reinforcement learning, and image classification, we provide empirical evidence that RNNs are more vulnerable to MIAs than the alternative feed-forward architectures. We then study differential privacy methods to protect the privacy of the training dataset of RNNs. These methods are known to provide rigorous privacy guarantees irrespective of the adversary's model. We develop an alternative differential privacy mechanism to the so-called DP-FedAvg algorithm, which instead of obfuscating gradients during training, obfuscates the model's output. Unlike the existing work, the mechanism allows for post-training adjustment of the privacy parameters without having to retrain the model. We provide numerical results suggesting that the mechanism provides a strong shield against MIAs while trading off marginal utility.
翻译:我们研究了在机器学习模型中部署经常性神经网络(RNN)的隐私影响。我们着重研究在机器学习模型中部署经常性神经网络(RNN)的隐私影响。我们侧重于一类隐私威胁,称为成员推断攻击(MIAs),其目的是推断是否使用了特定数据记录来培训模型。考虑到三种机器学习应用,即机器翻译、深强化学习和图像分类,我们提供了经验证据,证明RNNs比替代的供餐前结构更容易受到MIA的伤害。我们接着研究不同的隐私方法,以保护RNNs培训数据集的隐私。这些方法众所周知,无论对手的模型如何,都能提供严格的隐私保障。我们为所谓的DP-FedAvg算法开发了一种替代的差别隐私机制,而不是在培训期间混淆梯度,从而模糊了模型的输出。与现有的工作不同,该机制允许在培训后调整隐私参数,而不必重新培训模型。我们提供了数字结果,表明该机制在进行边际用途交易时,可以提供强有力的防止MIAs的屏障。