Let $\mathcal{G}$ be a minor-closed graph class. We say that a graph $G$ is a $k$-apex of $\mathcal{G}$ if $G$ contains a set $S$ of at most $k$ vertices such that $G\setminus S$ belongs to $\mathcal{G}.$ We denote by $\mathcal{A}_k (\mathcal{G})$ the set of all graphs that are $k$-apices of $\mathcal{G}.$ We prove that every graph in the obstruction set of $\mathcal{A}_k (\mathcal{G}),$ i.e., the minor-minimal set of graphs not belonging to $\mathcal{A}_k (\mathcal{G}),$ has size at most $2^{2^{2^{2^{\mathsf{poly}(k)}}}},$ where $\mathsf{poly}$ is a polynomial function whose degree depends on the size of the minor-obstructions of $\mathcal{G}.$ This bound drops to $2^{2^{\mathsf{poly}(k)}}$ when $\mathcal{G}$ excludes some apex graph as a minor.
翻译:$\ mathcal{ G} 。 我们用$\ mathcal{ A} 表示所有图表的大小 $2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</s>