Information Extraction from visual documents enables convenient and intelligent assistance to end users. We present a Neighborhood-based Information Extraction (NIE) approach that uses contextual language models and pays attention to the local neighborhood context in the visual documents to improve information extraction accuracy. We collect two different visual document datasets and show that our approach outperforms the state-of-the-art global context-based IE technique. In fact, NIE outperforms existing approaches in both small and large model sizes. Our on-device implementation of NIE on a mobile platform that generally requires small models showcases NIE's usefulness in practical real-world applications.
翻译:从视觉文档中提取信息有助于为终端用户提供方便和智能的援助。 我们展示了以邻里为基础的信息提取(NIE)方法,该方法使用背景语言模型,并在视觉文档中关注当地周边环境,以提高信息提取的准确性。我们收集了两种不同的视觉文件数据集,并表明我们的方法优于最先进的基于全球背景的IE技术。事实上,NIE在大小模型中都优于现有方法。我们在一般需要小型模型的移动平台上对NIE的在实际应用中的实用性展示了NIE的实用性。