This paper studies noisy index coding problems over single-input single-output broadcast channels. The codewords from a chosen index code of length $N$ are transmitted after $2^N$-PSK modulation over an AWGN channel. In "Index Coded PSK Modulation for prioritized Receivers," the authors showed that when a length-$N$ index code is transmitted as a $2^N$-PSK symbol, the ML decoder at a receiver decodes directly to the message bit rather than following the two-step decoding process of first demodulating the PSK symbol and equivalently the index-coded bits and then doing index-decoding. In this paper, we consider unprioritized receivers and follow the two-step decoding process at the receivers. After estimating the PSK symbol using an ML decoder, at a receiver, there might be more than one decoding strategy, i.e., a linear combination of index-coded bits and different subsets of side information bits, that can be used to estimate the requested message. Thomas et al. in ["Single Uniprior Index Coding With Min Max Probability of Error Over Fading Channels,"] showed that for binary-modulated index code transmissions, minimizing the number of transmissions used to decode a requested message is equivalent to minimizing the probability of error. This paper shows that this is no longer the case while employing multi-level modulations. Further, we consider that the side information available to each receiver is also noisy and derive an expression for the probability that a requested message bit is estimated erroneously at a receiver. We also show that the criterion for choosing a decoding strategy that gives the best probability of error performance at a receiver changes with the signal-to-noise ratio at which the side information is broadcast.
翻译:暂无翻译