Evacuation planning is a crucial part of disaster management where the goal is to relocate people to safety and minimize casualties. Every evacuation plan has two essential components: routing and scheduling. However, joint optimization of these two components with objectives such as minimizing average evacuation time or evacuation completion time, is a computationally hard problem. To approach it, we present MIP-LNS, a scalable optimization method that utilizes heuristic search with mathematical optimization and can optimize a variety of objective functions. We also present the method MIP-LNS-SIM, where we further combine an agent-based model together with MIP-LNS to more accurately estimate the delay on roads due to congestion. We use real-world road network and population data from Harris County in Houston, Texas, and apply our methods to find evacuation routes and schedule for the area. We show that, within a given time limit, MIP-LNS finds better solutions than existing methods in terms of average evacuation time, evacuation completion time and optimality guarantee of the solutions. We also perform experiments with MIP-LNS-SIM to show its efficacy in estimating delays in the road network due to congestion by using an agent based model. Our results show that MIP-LNS-SIM can find efficient evacuation plans, and at the same time provide an estimate of the evacuation completion time for the given plan with a small percent error.


翻译:疏散规划是灾害管理的关键部分,目标是将人员迁移到安全地点并尽量减少伤亡。每个疏散计划有两个基本组成部分:路线和时间安排。然而,联合优化这两个组成部分,以尽可能缩短平均疏散时间或撤离完成时间等为目标,这是一个计算上的困难。我们提出MIP-LNS,这是一个可扩缩的优化方法,利用数学优化的超速搜索,可以优化各种客观功能。我们还提出MIP-LNS-SIM方法,我们进一步将基于代理的模型与MIP-LNS-SIM结合起来,以便更准确地估计因拥挤造成的道路延误。我们使用德克萨斯州休斯敦哈里斯郡真实世界公路网络和人口数据,并运用我们的方法寻找该地区的疏散路线和时间表。我们表明,在一定的时限内,MIP-LNS在平均撤离时间、撤离完成时间和解决方案的最佳保证方面找到比现有方法更好的解决方案。我们还与MIP-LNS-SIM进行实验,以显示其在估计公路网络因交通拥挤而导致的延误的效率。我们使用一个基于MIP的进度计划,通过一个基于我们的代理人的完成计划,展示一个高效的完成结果。</s>

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员