For intractable problems on graphs of bounded treewidth, two graph parameters treedepth and vertex cover number have been used to obtain fine-grained complexity results. Although the studies in this direction are successful, we still need a systematic way for further investigations because the graphs of bounded vertex cover number form a rather small subclass of the graphs of bounded treedepth. To fill this gap, we use vertex integrity, which is placed between the two parameters mentioned above. For several graph problems, we generalize fixed-parameter tractability results parameterized by vertex cover number to the ones parameterized by vertex integrity. We also show some finer complexity contrasts by showing hardness with respect to vertex integrity or treedepth.
翻译:研究摘要:对于在受限树宽的图上的难题,已使用两种图参数——树深度和顶点覆盖数以获得精细级别复杂性结果。虽然在这个方向上的研究很成功,我们仍需要一个系统性的方法来进一步研究,因为受限顶点覆盖数的图形成了受限树深度图的一个相当小的子类。为了填补这个空白,我们使用节点完整性,这个参数位于上述两个参数之间。对于几个图形问题,我们将固定参数可追溯性的结果从顶点覆盖数参数化到节点完整性参数化。我们还通过展示相对于节点完整性或树深度的困难性证明了一些更精细的复杂性对比。