Citation practices are crucial in shaping the structure of scientific knowledge, yet they are often influenced by contemporary norms and biases. The emergence of Large Language Models (LLMs) introduces a new dynamic to these practices. Interestingly, the characteristics and potential biases of references recommended by LLMs that entirely rely on their parametric knowledge, and not on search or retrieval-augmented generation, remain unexplored. Here, we analyze these characteristics in an experiment using a dataset from AAAI, NeurIPS, ICML, and ICLR, published after GPT-4's knowledge cut-off date. In our experiment, LLMs are tasked with suggesting scholarly references for the anonymized in-text citations within these papers. Our findings reveal a remarkable similarity between human and LLM citation patterns, but with a more pronounced high citation bias, which persists even after controlling for publication year, title length, number of authors, and venue. The results hold for both GPT-4, and the more capable models GPT-4o and Claude 3.5 where the papers are part of the training data. Additionally, we observe a large consistency between the characteristics of LLM's existing and non-existent generated references, indicating the model's internalization of citation patterns. By analyzing citation graphs, we show that the references recommended are embedded in the relevant citation context, suggesting an even deeper conceptual internalization of the citation networks. While LLMs can aid in citation generation, they may also amplify existing biases, such as the Matthew effect, and introduce new ones, potentially skewing scientific knowledge dissemination.
翻译:暂无翻译