This contribution explores the combined capabilities of reduced basis methods and IsoGeometric Analysis (IGA) in the context of parameterized partial differential equations. The introduction of IGA enables a unified simulation framework based on a single geometry representation for both design and analysis. The coupling of reduced basis methods with IGA has been motivated in particular by their combined capabilities for geometric design and solution of parameterized geometries. In most IGA applications, the geometry is modelled by multiple patches with different physical or geometrical parameters. In particular, we are interested in nonaffine problems characterized by a high-dimensional parameter space. We consider the Empirical Interpolation Method (EIM) to recover an affine parametric dependence and combine domain decomposition to reduce the dimensionality. We couple spline patches in a parameterized setting, where multiple evaluations are performed for a given set of geometrical parameters, and employ the Static Condensation Reduced Basis Element (SCRBE) method. At the common interface between adjacent patches a static condensation procedure is employed, whereas in the interior a reduced basis approximation enables an efficient offline/online decomposition. The full order model over which we setup the RB formulation is based on NURBS approximation, whereas the reduced basis construction relies on techniques such as the Greedy algorithm or proper orthogonal decomposition (POD). We demonstrate the developed procedure using an illustrative model problem on a three-dimensional geometry featuring a multi-dimensional geometrical parameterization.
翻译:在参数化部分差异方程的背景下,这一贡献探索了降低基数的方法和IsoGoisrial 分析(IGA)的综合能力。引入IGA后,能够根据单一几何表示法,为设计和分析提供一个统一的模拟框架。将降低基数方法与IGA相结合,特别是由于这些方法在几何设计和参数化的参数化的解决方案方面的综合能力。在大多数IGA应用中,该几何模型以不同物理或几何参数的多重补丁制为模型。特别是,我们对以高维参数空间为特征的非对称问题感兴趣。我们认为,根据“经验化国际化方法”(EIM),可以恢复偏近的偏差参数依赖性,并结合域分解性以降低维度。我们在一个参数化环境下将降低基数方法对齐,对一组特定的几何参数进行多重评价,并采用“静态集中度降低基数”法(SCRBEE) 。在相邻的基数化中,采用了一个静态相连接程序。而在内部,一个降低基底基的对地对数化的对数化方法,可以使一个高效的内,对地基对地基对地基对地基结构进行,从而可以对准,对准,对准地基对准地基的对地基的对地基的对准,对地基面地基面地基面地基面地基面的对地基面的对地基面的对地基进行。