In this paper, we propose an abstract procedure for debiasing constrained or regularized potentially high-dimensional linear models. It is elementary to show that the proposed procedure can produce $\frac{1}{\sqrt{n}}$-confidence intervals for individual coordinates (or even bounded contrasts) in models with unknown covariance, provided that the covariance has bounded spectrum. While the proof of the statistical guarantees of our procedure is simple, its implementation requires more care due to the complexity of the optimization programs we need to solve. We spend the bulk of this paper giving examples in which the proposed algorithm can be implemented in practice. One fairly general class of instances which are amenable to applications of our procedure include convex constrained least squares. We are able to translate the procedure to an abstract algorithm over this class of models, and we give concrete examples where efficient polynomial time methods for debiasing exist. Those include the constrained version of the group LASSO, regression under monotone constraints, regression with positive monotone constraints and non-negative least squares. We also demonstrate that our method can debias Minkowski gauge selectors such as the ones proposed by Cai et al. (2016) under a certain condition. This solves an open problem posed by Cai et al. (2016) on how to debias such selectors when the covariance is unknown. In addition, we show that our abstract procedure can be applied to efficiently debias group LASSO, SLOPE and square-root SLOPE, among other popular regularized procedures under certain assumptions. We provide thorough simulation results in support of our theoretical findings.


翻译:在本文中, 我们提出一个抽象的程序, 以降低限制或常规化的潜在高维线性模型的偏差。 基本是要表明, 拟议的程序可以产生 $\frac{ 1unsqrt{ n ⁇ _ $- 信任间隔, 用于单个坐标( 甚至是约束对比) 的模型, 且该模型具有未知的共变性, 共变法的频谱。 虽然我们程序的统计保障证明很简单, 但由于我们需要解决的优化程序的复杂性, 其实施需要更加谨慎。 我们花费了大部分文件, 举例说明了可在实践中实施拟议算法的范例。 一种相当普通的、 适合我们程序应用的样本中, 包括固定的固定坐标( 或连带对比), 我们可以将程序转换成抽象的参数, 并且我们给出具体的例子, 有效的多时间方法, 由单调调调制的支持、 双调制的回归( ) 以及非负偏向的最小方。 我们还表明, 我们的方法可以用来在S- ral- oral oral oral oral ro 中, ro) 显示我们无法 ro dequal ro ro de de de de de ro ro ro ro de de de de ro ro ro ro ro ro ro 这样的 ro ro ro ro ro de de de de ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月5日
Arxiv
0+阅读 · 2023年3月3日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员