Sensing the fluid flow around an arbitrary geometry entails extrapolating from the physical quantities perceived at its surface in order to reconstruct the features of the surrounding fluid. This is a challenging inverse problem, yet one that if solved could have a significant impact on many engineering applications. The exploitation of such an inverse logic has gained interest in recent years with the advent of widely available cheap but capable MEMS-based sensors. When combined with novel data-driven methods, these sensors may allow for flow reconstruction around immersed structures, benefiting applications such as unmanned airborne/underwater vehicle path planning or control and structural health monitoring of wind turbine blades. In this work, we train deep reversible Graph Neural Networks (GNNs) to perform flow sensing (flow reconstruction) around two-dimensional aerodynamic shapes: airfoils. Motivated by recent work, which has shown that GNNs can be powerful alternatives to mesh-based forward physics simulators, we implement a Message-Passing Neural Network to simultaneously reconstruct both the pressure and velocity fields surrounding simulated airfoils based on their surface pressure distributions, whilst additionally gathering useful farfield properties in the form of context vectors. We generate a unique dataset of Computational Fluid Dynamics simulations by simulating random, yet meaningful combinations of input boundary conditions and airfoil shapes. We show that despite the challenges associated with reconstructing the flow around arbitrary airfoil geometries in high Reynolds turbulent inflow conditions, our framework is able to generalize well to unseen cases.


翻译:围绕任意的几何测量,对流体进行测量,需要从表面观察到的物理数量外推外推,以重建周围流体特征。这是一个具有挑战性的反向问题,但如果解决,则会对许多工程应用产生重大影响。近年来,随着广泛可得的廉价但有能力的MEMS传感器的出现,对这种反向逻辑的利用近年来引起了兴趣。当这些传感器与新的数据驱动方法相结合时,可以允许围绕浸泡结构进行流体重建,使无人驾驶的空气/水下车辆路径规划或控制以及风轮机叶结构健康监测等应用程序受益。在这项工作中,我们训练了深可逆的地平流轨道神经网络(GNNS)来围绕二维的空气动力形状进行流感测(流量重建 ) : 空气。 最近的工作使得GNNS能够成为基于内层的前方物理学模拟器的强大替代品,我们安装了一个信息支持神经网络, 以同时重建模拟的空气流结构的压力和速度, 以其表层压力分布为基础,同时,我们培养了深层的地平流的轨道结构,同时收集了我们更深层的土壤结构的土壤结构的滚动数据。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月1日
Arxiv
22+阅读 · 2022年3月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员