Reliable robotic grasping in unstructured environments is a crucial but challenging task. The main problem is to generate the optimal grasp of novel objects from partial noisy observations. This paper presents an end-to-end grasp detection network taking one single-view point cloud as input to tackle the problem. Our network includes three stages: Score Network (SN), Grasp Region Network (GRN), and Refine Network (RN). Specifically, SN regresses point grasp confidence and selects positive points with high confidence. Then GRN conducts grasp proposal prediction on the selected positive points. RN generates more accurate grasps by refining proposals predicted by GRN. To further improve the performance, we propose a grasp anchor mechanism, in which grasp anchors with assigned gripper orientations are introduced to generate grasp proposals. Experiments demonstrate that REGNet achieves a success rate of 79.34% and a completion rate of 96% in real-world clutter, which significantly outperforms several state-of-the-art point-cloud based methods, including GPD, PointNetGPD, and S4G. The code is available at https://github.com/zhaobinglei/REGNet_for_3D_Grasping.


翻译:在非结构化环境中可靠地掌握机器人是一项关键但具有挑战性的任务。 主要问题在于从局部噪音的观测中产生对新物体的最佳掌握。 本文展示了一个端到端的抓取探测网络, 将一个单一观点的云作为解决问题的投入。 我们的网络包括三个阶段: 记分网( SN)、 Grasp 区域网络(GRN) 和 Refine 网络(RN)。 具体地说, SN Regress 点抓住信心,以高度自信选择积极的点。 然后, GRN 对选定的正点进行理解性点的预测。 RN通过改进GRN预测的建议, 产生更准确的掌握。 为了进一步改进业绩,我们提议了一个抓紧锚机制, 使用指定的抓紧的锚来生成抓紧建议。 实验表明, REGNet 成功率达到79.34%,而实际世界的结壳的完成率达到96%,大大超出若干基于状态的点球度方法, 包括GPD、 PentNetGGPD和S4G。 该代码可在 http://gib_Grab_ GRAmb_ GRAmb_ groging_ groging_ groging.

0
下载
关闭预览

相关内容

【ECCV2020】OCRNet化解语义分割上下文信息缺失难题
专知会员服务
16+阅读 · 2020年8月24日
3D目标检测进展综述
专知会员服务
191+阅读 · 2020年4月24日
CVPR2020 | 商汤-港中文等提出PV-RCNN:3D目标检测新网络
专知会员服务
43+阅读 · 2020年4月17日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Dynamic Zoom-in Network 论文笔记
统计学习与视觉计算组
6+阅读 · 2018年7月18日
Faster R-CNN
数据挖掘入门与实战
4+阅读 · 2018年4月20日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Arxiv
4+阅读 · 2018年3月19日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Dynamic Zoom-in Network 论文笔记
统计学习与视觉计算组
6+阅读 · 2018年7月18日
Faster R-CNN
数据挖掘入门与实战
4+阅读 · 2018年4月20日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Top
微信扫码咨询专知VIP会员