The problem of covariance estimation for replicated surface-valued processes is examined from the functional data analysis perspective. Considerations of statistical and computational efficiency often compel the use of separability of the covariance, even though the assumption may fail in practice. We consider a setting where the covariance structure may fail to be separable locally -- either due to noise contamination or due to the presence of a~non-separable short-range dependent signal component. That is, the covariance is an additive perturbation of a separable component by a~non-separable but banded component. We introduce non-parametric estimators hinging on the novel concept of shifted partial tracing, enabling computationally efficient estimation of the model under dense observation. Due to the denoising properties of shifted partial tracing, our methods are shown to yield consistent estimators even under noisy discrete observation, without the need for smoothing. Further to deriving the convergence rates and limit theorems, we also show that the implementation of our estimators, including prediction, comes at no computational overhead relative to a separable model. Finally, we demonstrate empirical performance and computational feasibility of our methods in an extensive simulation study and on a real data set.


翻译:从功能数据分析角度审查了对复制的地平值过程的共差估计问题。统计和计算效率的考虑往往迫使使用共差的分离性,即使假设在实践中可能失败。我们考虑的是共差结构在当地可能无法分离的环境,要么是由于噪音污染,要么是由于存在一个不分离的短距离依赖信号组件。这就是说,共差是使用一个不可分离但带带宽的组件对一个可分离部分进行分解的添加剂。我们引入了非参数估算器,对转移部分追踪的新概念进行非参数性估算,使在密集观察下对模型进行计算效率估计成为可能。由于转移部分追踪的消化性能,我们的方法显示,即使在离散的观测下,也会产生一致的估算器,而不需要平滑。为了得出趋同率和限制理论,我们还表明,我们的估算器,包括预测器,在模拟和广泛数据计算模型方面,没有进行计算性平差的间接数据。最后,我们展示了一种模拟模型和模拟性模型。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | Distant Supervision for Relation Extraction
开放知识图谱
4+阅读 · 2017年12月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月17日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | Distant Supervision for Relation Extraction
开放知识图谱
4+阅读 · 2017年12月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员