We examine the use of a two-level deflation preconditioner combined with GMRES to locally solve the subdomain systems arising from applying domain decomposition methods to Helmholtz problems. Our results show that the direct solution method can be replaced with an iterative approach. This will be particularly important when solving large 3D high-frequency problems as subdomain problems can be too large for direct inversion or otherwise become inefficient. We additionally show that, even with a relatively low tolerance, inexact solution of the subdomain systems does not lead to a drastic increase in the number of outer iterations. As a result, it is promising that a combination of a two-level domain decomposition preconditioner with inexact subdomain solves could provide more economical and memory efficient numerical solutions to large-scale Helmholtz problems.
翻译:我们研究使用一种两级通缩先决条件,加上GMRES, 在当地解决因对赫尔姆霍尔茨问题应用域分解方法而产生的子域系统。 我们的结果表明,直接解决方案方法可以用迭接方法取代。 当解决大型3D高频问题时,这一点特别重要,因为子域问题可能太大,无法直接倒转,或者变得无效。 我们还表明,即使容忍度相对较低,子域系统不精确的解决方案也不会导致外层循环数量的急剧增加。 因此,有希望的是,将二级域分解前设器与不精确的子域解决方案结合起来,可以为大规模Helmholtz问题提供更经济、更记忆有效的数字解决方案。