The primary emphasis of this work is the development of a finite element based space-time discretization for solving the stochastic Lagrangian averaged Navier-Stokes (LANS-$\alpha$) equations of incompressible fluid turbulence with multiplicative random forcing, under nonperiodic boundary conditions within a bounded polygonal (or polyhedral) domain of R^d , d $\in$ {2, 3}. The convergence analysis of a fully discretized numerical scheme is investigated and split into two cases according to the spacial scale $\alpha$, namely we first assume $\alpha$ to be controlled by the step size of the space discretization so that it vanishes when passing to the limit, then we provide an alternative study when $\alpha$ is fixed. A preparatory analysis of uniform estimates in both $\alpha$ and discretization parameters is carried out. Starting out from the stochastic LANS-$\alpha$ model, we achieve convergence toward the continuous strong solutions of the stochastic Navier-Stokes equations in 2D when $\alpha$ vanishes at the limit. Additionally, convergence toward the continuous strong solutions of the stochastic LANS-$\alpha$ model is accomplished if $\alpha$ is fixed.
翻译:这项工作的主要重点是在非定期边界条件下,在R ⁇ d, d美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元)的交界多边形(或多边形)域内,开发基于空间时间的有限元素分解法,以便根据一个完全分解的数字方案的趋同分析,按照美元/美元(alpha)的比例,即我们首先假设用空间分解的步数大小来控制不可压缩的流体波动(LANS-$/ ALpha$/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元(美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元(美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元