Ensemble weather forecasts enable a measure of uncertainty to be attached to each forecast, by computing the ensemble's spread. However, generating an ensemble with a good spread-error relationship is far from trivial, and a wide range of approaches to achieve this have been explored -- chiefly in the context of numerical weather prediction models. Here, we aim to transform a deterministic neural network weather forecasting system into an ensemble forecasting system. We test four methods to generate the ensemble: random initial perturbations, retraining of the neural network, use of random dropout in the network, and the creation of initial perturbations with singular vector decomposition. The latter method is widely used in numerical weather prediction models, but is yet to be tested on neural networks. The ensemble mean forecasts obtained from these four approaches all beat the unperturbed neural network forecasts, with the retraining method yielding the highest improvement. However, the skill of the neural network forecasts is systematically lower than that of state-of-the-art numerical weather prediction models.


翻译:综合天气预报使每个预报都具有一定的不确定性,方法是计算共振的分布。然而,产生一个具有良好的扩散机体关系的组合,远不是微不足道的,而且已经探索了实现这一点的广泛办法 -- -- 主要是在数字天气预测模型的范围内。在这里,我们的目标是将确定性神经网络天气预报系统转变成一个共振预报系统。我们测试了产生共振的四种方法:随机的初始扰动、神经网络的再培训、网络中随机失灵的利用、以及利用单一矢量分解的初始扰动。后一种方法在数字天气预测模型中广泛使用,但尚未在神经网络上进行测试。从这四种方法中获得的共振动平均预测都击败了无扰神经网络预报,再培训方法产生最大的改进。然而,神经网络预报的技能通常低于最先进的数字天气预测模型。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
44+阅读 · 2020年12月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
6+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Arxiv
0+阅读 · 2021年1月17日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年12月18日
相关资讯
Top
微信扫码咨询专知VIP会员