For many practical, high-risk applications, it is essential to quantify uncertainty in a model's predictions to avoid costly mistakes. While predictive uncertainty is widely studied for neural networks, the topic seems to be under-explored for models based on gradient boosting. However, gradient boosting often achieves state-of-the-art results on tabular data. This work examines a probabilistic ensemble-based framework for deriving uncertainty estimates in the predictions of gradient boosting classification and regression models. We conducted experiments on a range of synthetic and real datasets and investigated the applicability of ensemble approaches to gradient boosting models that are themselves ensembles of decision trees. Our analysis shows that ensembles of gradient boosting models successfully detect anomaly inputs while having limited ability to improve the predicted total uncertainty. Importantly, we also propose a concept of a \emph{virtual} ensemble to get the benefits of an ensemble via only \emph{one} gradient boosting model, which significantly reduces complexity.


翻译:对于许多实际的高风险应用,必须量化模型预测中的不确定性,以避免代价高昂的错误。虽然对神经网络进行了广泛的预测性不确定性研究,但对于基于梯度推升的模型来说,这一专题似乎探索不足。然而,梯度推升往往在表格数据上达到最新的结果。这项工作审查了一种基于共性的框架,用以在梯度推升分类和回归模型预测中得出不确定性的估计。我们进行了一系列合成和真实数据集的实验,并调查了对梯度推动模型的共通方法的适用性,这些模型本身就包含决策树。我们的分析表明,梯度推动模型的集合成功地检测了异常输入,而改进预测的全不确定性的能力却有限。重要的是,我们还提出了一个基于共性共性的概念,以便获得仅通过emph{one}梯度推升模型获得的共性惠益,这大大降低了复杂性。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
59+阅读 · 2020年7月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【五分钟学AI】模型融合model ensemble
七月在线实验室
4+阅读 · 2017年10月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
回归预测&时间序列预测
GBASE数据工程部数据团队
43+阅读 · 2017年5月17日
Arxiv
6+阅读 · 2018年2月28日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【五分钟学AI】模型融合model ensemble
七月在线实验室
4+阅读 · 2017年10月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
回归预测&时间序列预测
GBASE数据工程部数据团队
43+阅读 · 2017年5月17日
Top
微信扫码咨询专知VIP会员