We show how to compute a 20-approximation of a minimum dominating set in a planar graph in a constant number of rounds in the LOCAL model of distributed computing. This improves on the previously best known approximation factor of 52, which was achieved by an elegant and simple algorithm of Lenzen et al. Our algorithm combines ideas from the algorithm of Lenzen et al. with recent work of Czygrinow et al. and Kublenz et al. to reduce to the case of bounded degree graphs, where we can simulate a distributed version of the classical greedy algorithm.
翻译:我们展示了如何用LOCOL分布式计算模型中固定数的圆数来计算平面图中设定的最小占位值最低值的20种近似系数。 这改善了先前最已知的52个近似系数,这是通过Lenzen等人的优雅和简单算法实现的。 我们的算法将Lenzen等人的算法中的想法与Czygrinow等人和Kublenz等人最近的工作结合起来,以降低到约束度图的情况,我们可以模拟传统的贪婪算法的分布式。