A statistical method for the elicitation of priors in Bayesian generalised linear models (GLMs) and extensions is proposed. Probabilistic predictions are elicited from the expert to parametrise a multivariate t prior distribution for the unknown linear coefficients of the GLM and an inverse gamma prior for the dispersion parameter, if unknown. The elicited predictions condition on defined elicitation scenarios. Dependencies among scenarios are then elicited from the expert by additionally conditioning on hypothetical experiments. Elicited conditional medians efficiently parametrise a canonical vine copula model of dependence that may be truncated for efficiency. The statistical elicitation method permits prior parametrisation of GLMs with alternative choices of design matrices or observation models from the same elicitation session. Extensions of the method apply to multivariate data, data with bounded support, semi-continuous data with point mass at zero, and count data with overdispersion or zero-inflation. A case study elicits a prior for an extended GLM embedded in a statistical model of overdispersed counts described by a binomial-simplex mixture distribution. The elicited canonical vine model of dependence is found to incorporate substantial information into the prior. The procedures of the statistical elicitation method are implemented in the R package eglm.
翻译:本文提出了一种用于贝叶斯广义线性模型(GLMs)和其扩展的先验引入的统计方法。通过向专家征求概率预测,从而为GLM的未知线性系数提供多元t分布的先验分布以及未知离散化参数的反伽马先验。征求的预测结果取决于定义的征求场景,并且可以进一步从专家那里获得场景之间的依赖关系,通过额外的假设实验进行概率条件的征集。征集到的条件中位数有效地参数化依赖的标准葡萄藤(vine copula)模型,从而可以提高效率。该统计引入方法支持从同一次征集中针对GLM的不同设计矩阵或观测模型进行先验参数化的功能。其扩展应用于多元数据、受限制的支持数据、在零点处存在点质量的半连续数据以及存在过度离散度或零膨胀的计数数据。本文通过案例研究向专家征集了一个扩展GLM的先验,该扩展GLM嵌入了一个由二项式-简单六面体混合分布描述的过度分散计数的统计模型中。结果表明,征集的标准葡萄藤模型能够将大量信息整合到先验中。本文的征集方法已在R语言包eglm中实现。