The neural text generation suffers from the text degeneration issue such as repetition. Traditional stochastic sampling methods only focus on truncating the unreliable "tail" of the distribution, and do not address the "head" part, which we show might contain tedious or even repetitive candidates with high probability that lead to repetition loops. They also do not consider the issue that human text does not always favor high-probability words. Inspired by these, in this work we propose a heuristic sampling method. We propose to use interquartile range of the predicted distribution to determine the "head" part, then permutate and rescale the "head" with inverse probability. This aims at decreasing the probability for the tedious and possibly repetitive candidates with higher probability, and increasing the probability for the rational but more surprising candidates with lower probability. The proposed algorithm provides a reasonable permutation on the predicted distribution which enhances diversity without compromising rationality of the distribution. We use pre-trained language model to compare our algorithm with traditional methods. Results show that our algorithm can effectively increase the diversity of generated samples while achieving close resemblance to human text.
翻译:神经文本的生成会受到像重复这样的文本变换问题的困扰。 传统的随机抽样方法只侧重于缩短分布不可靠的“ 尾巴 ”, 不处理“ 头” 部分, 我们显示它可能包含乏味或甚至重复性的候选人, 极有可能导致重复循环。 他们也不考虑人类文本并不总是偏向高概率单词的问题。 受这些问题的启发, 我们在此工作中建议一种超常抽样方法 。 我们提议使用预测分布的跨方范围来决定“ 头” 部分, 然后对“ 头” 进行调整, 以相反的概率来重新标定“ 头 ” 部分 。 这样做的目的是降低乏味和可能重复性的候选人的概率, 提高理性但更令人惊讶的候选人的概率 。 提议的算法对预测的分布提供了合理的偏差, 从而在不损害分布合理性的情况下增强多样性 。 我们使用预先训练的语言模型来比较我们的算法和传统方法 。 结果显示, 我们的算法可以有效地增加生成的样品的多样性, 同时接近人类文本 。