In this paper, we consider the problem of feature reconstruction from incomplete x-ray CT data. Such problems occurs, e.g., as a result of dose reduction in the context medical imaging. Since image reconstruction from incomplete data is a severely ill-posed problem, the reconstructed images may suffer from characteristic artefacts or missing features, and significantly complicate subsequent image processing tasks (e.g., edge detection or segmentation). In this paper, we introduce a novel framework for the robust reconstruction of convolutional image features directly from CT data, without the need of computing a reconstruction firs. Within our framework we use non-linear (variational) regularization methods that can be adapted to a variety of feature reconstruction tasks and to several limited data situations . In our numerical experiments, we consider several instances of edge reconstructions from angularly undersampled data and show that our approach is able to reliably reconstruct feature maps in this case.
翻译:在本文中,我们考虑利用不完整的X射线CT数据进行特征重建的问题,这些问题发生,例如,由于相关医疗成像的剂量减少。由于从不完整数据进行图像重建是一个严重不恰当的问题,因此重建后的图像可能受到特有人工制品或缺失特征的影响,并会使随后的图像处理任务(例如边缘探测或分解)大大复杂化。在本文件中,我们引入了一个新框架,直接从CT数据进行动态的革命图像特征重建,而不需要计算重建的纤维。在我们的框架内,我们使用非线性(变式)正规化方法,可以适应各种特征重建任务和若干有限的数据情况。在我们的数项实验中,我们考虑了从侧面抽样数据进行的若干边缘重建的例子,并表明我们的方法能够可靠地重建这一案例的特征地图。